Water–Energy Nexus in Typical Industrial Water Circuits

Author:

Oliveira Miguel C.,Iten Muriel,Matos Henrique A.ORCID,Michels Jochen

Abstract

Water–energy nexus has been recognized as an important and challenging issue, namely in industry. This is due to industry reforms, increasing demand, and climate change. This concept focuses on the link between energy and water infrastructure. Overall, there is limited understanding of the nature of this link, as it is assumed that water is not a threat to the energy sector or an influence of the electricity to the water resources. This work aims to present and evaluate case studies related to typical industrial water circuits. These circuits represent some of the most relevant industrial sectors in terms of water–energy nexus such as: steel industry, chemical industry, paper and pulp industry, and food industry. Moreover, these sectors also cover typical industrial water circuits, namely: cooling circuit, gas washing circuit, water treatment circuit, transportation circuit, and quenching circuit. The circuits have firstly been assembled in OpenModelica software considering the equipment and physical layout of each circuit. According to their actual operation conditions, the energy and water consumption have been estimated. Furthermore, water and energy efficiency improvement measures have been proposed and implemented into the assembled models. This enabled a techno-economic assessment based on the implementation of the improvement measures. In order to contextualise these results into the industrial trends, the achieved water and energy savings are projected into potential national and sectorial savings considering the current levels of water and energy demand for each sector.

Funder

Horizon 2020 Framework Programme

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference59 articles.

1. Consumption of Energyhttp://ec.europa.eu/eurostat/statistics-explained/index.php/Consumption_of_energy

2. Water Use in Industryhttp://ec.europa.eu/eurostat/statisticsexplained/index.php/Archive:Water_use_in_industry

3. Green Paper on Energy Efficiency or Doing More with Less,2005

4. Action Plan for Energy Efficiency: Realising the Potential,2006

5. EUROPAhttps://ec.europa.eu/clima/policies/strategies/2020_en

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3