Investigation of CO2 Variation and Mapping Through Wearable Sensing Techniques for Measuring Pedestrians’ Exposure in Urban Areas

Author:

Pigliautile Ilaria,Marseglia Guido,Pisello Anna LauraORCID

Abstract

Citizens’ wellbeing is mainly threatened by poor air quality and local overheating due to human-activity concentration and land-cover/surface modification in urban areas. Peculiar morphology and metabolism of urban areas lead to the well-known urban-heat-island effect, characterized by higher air temperature in cities than in their surroundings. The environmental mapping of the urban outdoors at the pedestrian height could be a key tool to identify risky areas for humans in terms of both poor-air-quality exposure and thermal comfort. This study proposes urban environment investigation through a wearable miniaturized weather station to get the spatial distribution of key parameters according to the citizens’ perspective. The innovative system monitors and traces the field values of carbon dioxide (CO2) concentration, such as air temperature and wind-speed values, which have been demonstrated to be related to outdoor wellbeing. The presented monitoring campaign focused on a two-way, two-lane road in Rome (Italy) during traffic rush hours on both working days and weekends. Collected data were analyzed with respect to timing and position, and possible correlations among different variables were examined. Results demonstrated the wearable system capability to catch pedestrian-exposure variability in terms of CO2 concentration and local overheating due to urban structure, highlighting potentials in the citizens’ involvement as observation vectors to extensively monitor urban environmental quality.

Funder

Horizon 2020 Framework Programme

Fondazione Cassa di Risparmio di Perugia

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference64 articles.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3