How Complex Groundwater Flow Systems Respond to Climate Change Induced Recharge Reduction?

Author:

Trásy-Havril Timea,Szkolnikovics-Simon SzilviaORCID,Mádl-Szőnyi JuditORCID

Abstract

Our recent knowledge about the role of different fluid driving forces in the response of groundwater flow systems to climate change is still limited. This current study aimed to evaluate possible spatial and temporal changes in complex, gravity- and overpressure-driven groundwater flow systems induced by climate change and look for general trends and characteristics of the flow field using 2D transient groundwater flow simulations. Results showed significant large-scale changes in the transient subsurface flow field and flow dynamics due to recharge reduction. Local gravity-driven flow systems are the most vulnerable to atmospheric processes, while overpressured regimes are expected to be independent of direct climatic variability. By the involvement of different degrees of overpressure, it was revealed that, as the degree of overpressure increases, the penetration depth of the topography-driven local flow systems decreases. The higher the overpressure, the lower the climate change-induced groundwater level decrease over time, suggesting the buffering effect of overpressure as a fluid driving force in the flow systems’ response to the changes in hydrologic parameters. The main novelty of the study is the involvement of different fluid driving forces in the evaluation with the combination of a regional scale investigation, which is unique in the context of climate change effects on groundwater systems.

Funder

National Multidisciplinary Laboratory for Climate Change

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3