Alteration of Dissimilatory Nitrate Reduction Pathways in the Intertidal Sediment during Macroalgae Blooms

Author:

Senga YukikoORCID,Sato Tsubasa,Shibaki Kanae,Kuroiwa Megumi,Nohara Seiichi,Suwa Yuichi

Abstract

To elucidate the effect of macroalgae blooms on dissimilatory nitrate reduction pathways (denitrification, anammox, and DNRA) in sediments of the hypereutrophic Yatsu tidal flat, eastern Japan, sediment denitrification, anammox, and DNRA rates were measured using a 15N tracer technique at two sites affected and unaffected by macroalgae (Ulva) blooms and in incubation experiments with and without Ulva. Anammox was insignificant at both sites and in both experiments. The denitrification rate was consistently higher than the DNRA rate, and its contributions to the total dissimilatory nitrate reduction were 82% and 85% at sites affected and unaffected by Ulva, respectively. In a sediment incubation experiment with Ulva, the contribution of DNRA had increased to approximately 30% on day 7, which is when the sulfide concentration was the highest. Sulfide produced by sulfate reduction during macroalgae blooms inhibited denitrification and did not change the DNRA, and consequently increased the DNRA contribution. On day 21, after reaching the peak sulfide concentration during the late macroalgae collapse, the DNRA contribution decreased to 15%. These results indicated that the DNRA contribution was greater during the macroalgae blooms than at the collapse, although denitrification dominated DNRA regardless of the macroalgal status. Therefore, vigorous macroalgae cover and sulfide production under the macroalgae cover had an important impact on the nitrogen dynamics.

Funder

the Japan Society for the Promotion of Science KAKENHI grants

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3