Non-Invasive Detection of SARS-CoV-2 Antigen in Saliva versus Nasopharyngeal Swabs Using Nanobodies Conjugated Gold Nanoparticles

Author:

Kamel Manal,Maher Sara,El-Baz Hanan,Salah Faten,Sayyouh Omar,Demerdash Zeinab

Abstract

The development of sensitive, non-invasive tests for the detection of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) antigens is imperative, and it is still challenging to manage the extent of infection throughout the population. Here, we designed and optimized a sandwich enzyme-linked immunosorbent assay (ELISA) protocol for SARS-CoV-2 S1 antigen detection in saliva. Both saliva samples and nasopharyngeal swabs were collected from 220 real-time quantitative polymerase chain reaction (RT-qPCR)-confirmed positive and negative cases. S1 protein receptor-binding domain (RBD) nanobodies were efficiently conjugated with 40 nm gold nanoparticles (AuNPs) and employed as antigen detection probes in the developed system, while recombinant S1 monoclonal antibodies (S1mAbs) were employed as antigen capture probes. After checkerboard assays and system optimization, the clinical samples were tested. In saliva, the developed ELISA system showed the highest sensitivity (93.3) for samples with cycle threshold (Ct) values ≤ 30; interestingly, high sensitivity (87.5 and 86%) was also achieved for samples with Ct values ≤ 35 and ≤40, respectively, compared with 90, 80 and 88% sensitivity rates for nasopharyngeal swabs with the same categorized Ct values. However, the specificity was 100%, and no cross-reactions were detected with Middle East respiratory syndrome coronavirus (MERS-CoV) or SARS-CoV antigens. These results reveal that our protocol could be established as an efficient and sensitive, non-invasive diagnostic tool for the early detection of SARS-CoV-2 infection using easily collectable saliva samples.

Funder

by Science, Technology and Innovation Funding Authority

Publisher

MDPI AG

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Immunology and Microbiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3