Modelling Differential Diagnosis of Febrile Diseases with Fuzzy Cognitive Map

Author:

Obot Okure1,John Anietie2,Udo Iberedem1,Attai Kingsley2ORCID,Johnson Ekemini2,Udoh Samuel1ORCID,Nwokoro Chukwudi1ORCID,Akwaowo Christie3,Dan Emem3,Umoh Uduak1,Uzoka Faith-Michael4

Affiliation:

1. Department of Computer Science, University of Uyo, Uyo 520103, Nigeria

2. Department of Mathematics and Computer Science, Ritman University, Ikot Ekpene 530101, Nigeria

3. Health Systems Research Hub, University of Uyo Teaching Hospital, Uyo 520103, Nigeria

4. Department of Mathematics and Computing, Mount Royal University, Calgary, AB T3E 6K6, Canada

Abstract

The report of the World Health Organization (WHO) about the poor accessibility of people living in low-to-middle-income countries to medical facilities and personnel has been a concern to both professionals and nonprofessionals in healthcare. This poor accessibility has led to high morbidity and mortality rates in tropical regions, especially when such a disease presents itself with confusable symptoms that are not easily differentiable by inexperienced doctors, such as those found in febrile diseases. This prompted the development of the fuzzy cognitive map (FCM) model to serve as a decision-support tool for medical health workers in the diagnosis of febrile diseases. With 2465 datasets gathered from four states in the febrile diseases-prone regions in Nigeria with the aid of 60 medical doctors, 10 of those doctors helped in weighting and fuzzifying the symptoms, which were used to generate the FCM model. Results obtained from computations to predict diagnosis results for the 2465 patients, and those diagnosed by the physicians on the field, showed an average of 87% accuracy for the 11 febrile diseases used in the study. The number of comorbidities of diseases with varying degrees of severity for most patients in the study also covary strongly with those found by the physicians in the field.

Funder

New Frontier Research Fund

Publisher

MDPI AG

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Immunology and Microbiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3