Knockdown of the Autophagy Protein Beclin-1 Does Not Affect Innate Cytokine Production in Human Lung Epithelial Cells during Respiratory Syncytial Virus Infection

Author:

Parameswaran Kavesha1,Azman Amiera Fatin1,Chia Suet Lin12ORCID,Yusoff Khatijah13,Ismail Saila1ORCID

Affiliation:

1. Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia

2. UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia

3. Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Kajang 43000, Malaysia

Abstract

Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in young children, globally. Autophagy is a cellular degradation process that mediates cell survival. Studies using mouse models have demonstrated that inhibiting autophagy affects the production of cytokines triggered by RSV. However, the effect of autophagy on RSV-induced cytokine production in human cells remains inadequately studied. Our previous research showed that inhibiting autophagy using pharmacological inhibitors did not affect the innate cytokine production in human lung epithelial cells (BEAS-2B) following RSV infection. In this study, we sought to validate these findings using a more specific approach, employing short-interfering RNA (siRNA) to target the important autophagy protein Beclin-1 (Bec-1). Prior to measuring cytokine production, we confirmed that silencing Bec-1 with siRNA effectively suppressed autophagy without affecting cell viability. Our results revealed that inhibiting autophagy through Bec-1 knockdown did not affect the production of innate cytokines CXCL8 and CCL5 in BEAS-2B cells during RSV infection, consistent with our previous findings using pharmacological inhibitors. Overall, our data suggest that targeting autophagy may not be an effective strategy for alleviating RSV-induced airway inflammation.

Funder

Ministry of Higher Education, Malaysia

Universiti Putra Malaysia

Publisher

MDPI AG

Subject

Infectious Diseases,Public Health, Environmental and Occupational Health,General Immunology and Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3