Abstract
In cold climate regions, the energy associated with indoor heating constitutes a large portion of energy consumption. Increasing energy utilization efficiency is critically important for both economic and environmental reasons. Directly converting electrical energy to thermal energy using joule heating construction elements can save energy and investment to the water pipelines which have been extensively used for indoor heating in China. The fired brick has been extensively used to make pavements, walls and other masonry. Taking advantage of the high dispersion quality of graphene oxide (GO) in water, as well as the firing process used to make fired bricks, graphene nanocomposite bricks with excellent electrical properties and improved mechanical performance were prepared in China. The compressive strength of the bricks showed a substantial increase from 3.15 MPa to 7.21 MPa when GO concentration was 0.1 wt.%. Through applying 5 volts of electrical field within 5 minutes, the nanocomposites can be heated from room temperature to 60 °C, 110 °C and 160 °C for the nanocomposite bricks with graphene concentration of 3 wt.%, 4 wt.% and 5 wt.%, respectively, due to the extremely low percolation threshold (~0.5 wt.%) and high conductivity (10 Ω·cm at 1 wt.%). The sheets were connected more tightly when the GO content was increased. The thermal efficiency can reach up to 88% based on the applied voltage, measured resistance and temperature rise curves.
Funder
Hubei Provincial Natural Science Foundation
Provincial Department of Transportation
Subject
General Materials Science
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献