Author:
Meng Shuaiju,Dong Lishan,Yu Hui,Huang Lixin,Han Haisheng,Cheng Weili,Feng Jianhang,Wen Jingjing,Li Zhongjie,Zhao Weimin
Abstract
An exceptionally high-strength rare-earth-free Mg–8Al–3Bi (AB83) alloy was successfully fabricated via extrusion and caliber rolling. After three-pass caliber rolling, the homogenous microstructure of the as-extruded AB83 alloy was changed to a necklace-like bimodal structure consisting of ultra-fine dynamic recrystallized (DRXed) grains and microscale deformed grains. Additionally, both Mg17Al12 and Mg3Bi2 nanoprecipitates, undissolved microscale Mg17Al12, and Mg3Bi2 particles were dispersed in the matrix of caliber-rolled (CRed) AB83 alloy. The CRed AB83 sample demonstrated a slightly weakened basal texture, compared with that of the as-extruded sample. Consequently, CRed AB83 showed a tensile yield strength of 398 MPa, an ultimate tensile strength of 429 MPa, and an elongation of 11.8%. The superior mechanical properties of the caliber-rolled alloy were mainly originated from the combined effects of the necklace-like bimodal microstructure containing ultra-fine DRXed grains, the homogeneously distributed nanoprecipitates and microscale particles, as well as the slightly modified basal texture.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Tianjin city
Subject
General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献