ReqGen: Keywords-Driven Software Requirements Generation

Author:

Zhao ZiyanORCID,Zhang Li,Lian Xiaoli,Gao Xiaoyun,Lv Heyang,Shi Lin

Abstract

Software requirements specification is undoubtedly critical for the whole software life-cycle. Currently, writing software requirements specifications primarily depends on human work. Although massive studies have been proposed to speed up the process via proposing advanced elicitation and analysis techniques, it is still a time-consuming and error-prone task, which needs to take domain knowledge and business information into consideration. In this paper, we propose an approach, named ReqGen, which can provide further assistance by automatically generating natural language requirements specifications based on certain given keywords. Specifically, ReqGen consists of three critical steps. First, keywords-oriented knowledge is selected from the domain ontology and is injected into the basic Unified pre-trained Language Model (UniLM) for domain fine-tuning. Second, a copy mechanism is integrated to ensure the occurrence of keywords in the generated statements. Finally, a requirements-syntax-constrained decoding is designed to close the semantic and syntax distance between the candidate and reference specifications. Experiments on two public datasets from different groups and domains show that ReqGen outperforms six popular natural language generation approaches with respect to the hard constraint of keywords’ (phrases’) inclusion, BLEU, ROUGE, and syntax compliance. We believe that ReqGen can promote the efficiency and intelligence of specifying software requirements.

Funder

National Science Foundation of China

State Key Laboratory of Software Development Environment

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3