Segmentation and Analysis Emphasizing Neonatal MRI Brain Images Using Machine Learning Techniques

Author:

Saladi SarithaORCID,Karuna YepugantiORCID,Koppu Srinivas,Reddy Gudheti Ramachandra,Mohan Senthilkumar,Mallik Saurav,Qin HongORCID

Abstract

MRI scanning has shown significant growth in the detection of brain tumors in the recent decade among various methods such as MRA, X-ray, CT, PET, SPECT, etc. Brain tumor identification requires high exactness because a minor error can be life-threatening. Brain tumor disclosure remains a challenging job in medical image processing. This paper targets to explicate a method that is more precise and accurate in brain tumor detection and focuses on tumors in neonatal brains. The infant brain varies from the adult brain in some aspects, and proper preprocessing technique proves to be fruitful to avoid miscues in results. This paper is divided into two parts: In the first half, preprocessing was accomplished using HE, CLAHE, and BPDFHE enhancement techniques. An analysis is the sequel to the above methods to check for the best method based on performance metrics, i.e., MSE, PSNR, RMSE, and AMBE. The second half deals with the segmentation process. We propose a novel ARKFCM to use for segmentation. Finally, the trends in the performance metrics (dice similarity and Jaccard similarity) as well as the segmentation results are discussed in comparison with the conventional FCM method.

Funder

USA NSF

USA National Academy of Medicine

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine and deep learning approaches for alzheimer disease detection using magnetic resonance images: An updated review;Measurement;2024-02

2. A Study on Brain Tumor in Various Fields using Machine Learning;2023 2nd International Conference on Automation, Computing and Renewable Systems (ICACRS);2023-12-11

3. A Breast Mass Image Segmentation Method Based on Improved UNet 3+ Network;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

4. Deep learning‐based robust hybrid approaches for brain tumor classification in magnetic resonance images;International Journal of Imaging Systems and Technology;2023-10-10

5. CO‐WOA: Novel Optimization Approach for Deep Learning Classification of Fish Image;Chemistry & Biodiversity;2023-07-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3