Improving Data Sparsity in Recommender Systems Using Matrix Regeneration with Item Features

Author:

Choi Sang-Min,Lee Dongwoo,Jang Kiyoung,Park ChihyunORCID,Lee Suwon

Abstract

With the development of the Web, users spend more time accessing information that they seek. As a result, recommendation systems have emerged to provide users with preferred contents by filtering abundant information, along with providing means of exposing search results to users more effectively. These recommendation systems operate based on the user reactions to items or on the various user or item features. It is known that recommendation results based on sparse datasets are less reliable because recommender systems operate according to user responses. Thus, we propose a method to improve the dataset sparsity and increase the accuracy of the prediction results by using item features with user responses. A method based on the content-based filtering concept is proposed to extract category rates from the user–item matrix according to the user preferences and to organize these into vectors. Thereafter, we present a method to filter the user–item matrix using the extracted vectors and to regenerate the input matrix for collaborative filtering (CF). We compare the prediction results of our approach and conventional CF using the mean absolute error and root mean square error. Moreover, we calculate the sparsity of the regenerated matrix and the existing input matrix, and demonstrate that the regenerated matrix is more dense than the existing one. By computing the Jaccard similarity between the item sets in the regenerated and existing matrices, we verify the matrix distinctions. The results of the proposed methods confirm that if the regenerated matrix is used as the CF input, a denser matrix with higher predictive accuracy can be constructed than when using conventional methods. The validity of the proposed method was verified by analyzing the effect of the input matrix composed of high average ratings on the CF prediction performance. The low sparsity and high prediction accuracy of the proposed method are verified by comparisons with the results by conventional methods. Improvements of approximately 16% based on K-nearest neighbor and 15% based on singular value decomposition, and a three times improvement in the sparsity based on regenerated and original matrices are obtained. We propose a matrix reconstruction method that can improve the performance of recommendations.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3