Constructing Traceability Links between Software Requirements and Source Code Based on Neural Networks

Author:

Dai PengORCID,Yang Li,Wang Yawen,Jin Dahai,Gong Yunzhan

Abstract

Software requirement changes, code changes, software reuse, and testing are important activities in software engineering that involve the traceability links between software requirements and code. Software requirement documents, design documents, code documents, and test case documents are the intermediate products of software development. The lack of interrelationship between these documents can make it extremely difficult to change and maintain the software. Frequent requirements and code changes are inevitable in software development. Software reuse, change impact analysis, and testing also require the relationship between software requirements and code. Using these traceability links can improve the efficiency and quality of related software activities. Existing methods for constructing these links need to be better automated and accurate. To address these problems, we propose to embed software requirements and source code into feature vectors containing their semantic information based on four neural networks (NBOW, RNN, CNN, and self-attention). Accurate traceability links from requirements to code are established by comparing the similarity between these vectors. We develop a prototype tool RCT based on this method. These four networks’ performances in constructing links are explored on 18 open-source projects. The experimental results show that the self-attention network performs best, with an average Recall@50 value of 0.687 on the 18 projects, which is higher than the other three neural network models and much higher than previous approaches using information retrieval and machine learning.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3