Author:
Cuevas-Muñoz José M.,García-Pedrajas Nicolás E.
Abstract
Multi-label classification as a data mining task has recently attracted increasing interest from researchers. Many current data mining applications address problems with instances that belong to more than one category. These problems require the development of new, efficient methods. Multi-label k-nearest neighbors rule, ML-kNN, is among the best-performing methods for multi-label problems. Current methods use a unique k value for all labels, as in the single-label method. However, the distributions of the labels are frequently very different. In such scenarios, a unique k value for the labels might be suboptimal. In this paper, we propose a novel approach in which each label is predicted with a different value of k. Obtaining the best k for each label is stated as an optimization problem. Three different algorithms are proposed for this task, depending on which multi-label metric is the target of our optimization process. In a large set of 40 real-world multi-label problems, our approach improves the results of two different tested ML-kNN implementations.
Funder
Spanish Ministry of Science and Innovation
Junta de Andalucía Excellence in Research Program and FEDER Funds
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献