Optimal Sizing of a Photovoltaic Pumping System Integrated with Water Storage Tank Considering Cost/Reliability Assessment Using Enhanced Artificial Rabbits Optimization: A Case Study

Author:

Mazloumi Abdolhamid,Poolad Alireza,Mokhtari Mohammad SadeghORCID,Altman Morteza BabaeeORCID,Abdelaziz Almoataz Y.ORCID,Elsisi MahmoudORCID

Abstract

In this paper, optimal sizing of a photovoltaic (PV) pumping system with a water storage tank (WST) is developed to meet the water demand to minimize the life cycle cost (LCC) and satisfy the probability of interrupted water (pIW) constraint considering real region data. The component sizing, including the PV resources and the WST, is determined optimally based on LCC and pIW using a new meta-heuristic method named enhanced artificial rabbits optimization (EARO) via a nonlinear inertia weight reduction strategy to overcome the premature convergence of its conventional algorithm. The WST is sized optimally regarding the lack of irradiation and inaccessibility of the pumping system so that it is able to improve the water supply reliability. The LCC for water extraction heights of 5 and 10 m is obtained at 0.2955 M$ and 0.2993 M$, respectively, and the pIW in these two scenarios is calculated as zero, which means the complete and reliable supply of the water demand of the customers using the proposed methodology based on the EARO. Also, the results demonstrated the superior performance of EARO in comparison with artificial rabbits optimization (ARO) and particle swarm optimization (PSO); these methods have supplied customers’ water demands with higher costs and lower reliability than the proposed EARO method. Also, during the sensitivity analysis, the results showed that changes in the irradiance and height of the water extraction have a considerable effect on the cost and ability to meet customer demand.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3