Abstract
In life-testing investigations, accelerated life testing is crucial since it reduces both time and costs. In this study, constant-stress partially accelerated life tests using adaptive progressively Type I censored samples are taken into account. This is accomplished under the assumption that the lifespan of products under normal use conditions follows the inverse Weibull distribution. In addition to using the maximum likelihood approach, the maximum product of the spacing procedure is utilized to obtain the point and interval estimates of the model parameters as well as the acceleration factor. Employing the premise of independent gamma priors, the Bayes point estimates using the squared error loss function and the Bayes credible intervals are obtained based on both the likelihood and product of spacing functions via the Markov chain Monte Carlo technique. To assess the effectiveness of the various approaches, a simulation study is used because it is not possible to compare the findings theoretically. To demonstrate the applicability of the various approaches, two real datasets for the lifetime of micro-droplets in the ambient environment and light-emitting diode failure data are investigated. Based on the numerical results, to estimate the parameters and acceleration factor of the inverse Weibull distribution based on the suggested scheme with constant-stress partially accelerated life tests, it is recommended to utilize the Bayesian estimation approach.
Funder
King Abdulaziz University
Subject
General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献