Influence of Aortic Valve Leaflet Material Model on Hemodynamic Features in Healthy and Pathological States

Author:

Pil Nikita,Kuchumov Alex G.ORCID,Kadyraliev Bakytbek,Arutunyan Vagram

Abstract

Long-term fiber tissue remodeling and the progressive thickening of the aortic valve leaflets called calcific aortic stenosis lead to cardiac blood outflow obstruction. This disease is the most prevalent heart valve pathology in developed countries. Surgeons can perform aortic valve replacement through traditional open-heart surgery involving a cut (incision) in the chest or use minimally invasive methods such as transcatheter aortic valve implantation (TAVI). These types of surgery have numerous advantages and limitations. Recently, the Ozaki operation for aortic valve replacement using tissue from the autologous pericardium has been proposed. Despite being a promising technique for aortic valve pathology treatment, there is a lack of long-term results and optimal selection of leaflet sizing. Numerical fluid simulations can help surgeons predict operation outcomes for each patient. Nevertheless, the description of the material model for leaflet mechanics leaves an open question. Furthermore, selecting the most suitable model to describe the different conditions of the aortic valve is difficult. We performed a numerical analysis of aortic valve leaflet material models to describe the hemodynamics in normal, pathological, and Ozaki cases. We also reveal wall shear stress, von Mises stress, and displacement distributions. Based on the parameters mentioned above, we found that the Ozaki case model behaved similarly to the mathematical model describing the normal case. Numerical simulations also provide information on the mechanisms of aortic valve work in different states of the heart cycle.

Funder

Perm Scientific and Educational Center “Rational Subsoil Use”

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3