The Impact of Earlywood and Latewood on the Compressive Stress of Thermally Modified Douglas Fir

Author:

Wang Junfeng1,Yang Kai2,Li Wanzhao2,Wang Xinzhou2ORCID,Van den Bulcke Jan3ORCID,Van Acker Joris23ORCID

Affiliation:

1. Guangxi Key Laboratory of Superior Timber Trees Resource Cultivation, Nanning 530002, China

2. College of Materials Science and Engineering, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China

3. UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium

Abstract

Thermal modification can increase the physical stability and impact the mechanical strength of wood. It is necessary to understand the effects of modifications on the compressive stress of wood. In this study, Douglas fir (Pseudotsuga menziessi) blocks were modified at 180 °C (TM-180 °C) and 210 °C (TM-210 °C). The compressive stress of pure earlywood (EW), pure latewood (LW), and combined earlywood and latewood (ELW) specimens was measured. The specimens were compressed at 30% of their original thickness, and during the compression test the strain distribution of the ELW was recorded. In addition, the microstructures before and after compression were investigated, complemented with SEM to understand the structural changes taking place. The results showed that the compressive stress of the TM-180 °C specimens was the highest because the thermal modification increased the stiffness of cell walls and the homogenized strain distribution in the ELW specimens. The control specimens had a higher compression set recovery rate than the thermally modified specimens. The tracheid cell walls in the EW and LW specimens were flattened and buckled, respectively, due to compression. In the thermally modified materials, cell wall fissures and wood ray fractures in the EW and LW specimens, respectively, were observed. For the ELW specimens, the structural changes in the latewood were not obvious and the structural changes in the earlywood were less significant than in the full EW specimens. Compared to the EW specimens, the earlywood in the ELW specimens showed higher compression set recovery rates. It seems that structural failure in earlywood is limited when used in combination with latewood, resulting from the homogenized strain distribution in earlywood.

Funder

Guangxi Key Laboratory of Superior Timber Tree Resource Cultivation

Research Project of Jiangxi Forestry Bureau

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3