An Estimation of the Discharge Exponent of a Drip Irrigation Emitter by Response Surface Methodology and Machine Learning

Author:

Chen XueliORCID,Wei ZhengyingORCID,He Kun

Abstract

The discharge exponent is a general index used to evaluate the hydraulic performance of emitters, which is affected by emitters’ structural parameters. Accurately estimating the effect of change in structural parameters on the discharge exponent is critical for the design and optimization of emitters. In this research, the response surface methodology (RSM) and two machine learning models, the artificial neural network (ANN) and support vector regression (SVR), are used to predict the discharge exponent of tooth-shaped labyrinth channel emitters. The input parameters consist of the number of channel units (N), channel depth (D), tooth angle (α), tooth height (H) and channel width (W). The applied models are assessed through the coefficient of determination (R2), root-mean-square error (RMSE) and mean absolute error (MAE). The analysis of variance shows that tooth height had the greatest effect on the discharge exponent. Statistical criteria indicate that among the three models, the SVR model has the highest prediction accuracy and the best robustness with an average R2 of 0.9696, an average RMSE of 0.0037 and an average MAE of 0.0031. The SVR model can quickly and accurately simulate the discharge exponent of emitters, which is conducive to the rapid design of the emitter.

Funder

National Key Research and Development Plan of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3