Femtosecond Pump Probe Reflectivity Spectra in CdTe and GaAs Crystals at Room Temperature

Author:

Sun HaoORCID,Ma Hong,Leng Jiancai

Abstract

Ultrafast pump probe reflectivity (PPR) signal near band edge is modeled by taking into account band filling (BF) and band gap renormalization (BGR) effects with the carrier density of ~1017/cm3 in GaAs crystal at room temperature. The calculated results indicate that the transient reflectivity ΔR/R is determined by BF and BGR effects. The most interesting feature is that ΔR/R signal experiences a sign change from photo-bleaching (PB) to photo-absorption (PA) due to the competition between BF and BGR effects. We experimentally measured ΔR as a function of photon energy across band edge with carrier density of ~1017/cm3 in GaAs and CdTe crystals, which has a similar trend as that calculated according to our model. In addition, the reflectivity is very sensitive to electron spin orientation, which is well confirmed by the corresponding experiments with 100 fs pump probe reflectivity spectroscopy in bulk CdTe. Our research in this work provides a method to study optoelectronic properties of conventional semiconductors at moderate carrier density excited by ultrafast laser pulse. Importantly, this model can be used for other novel semiconductor materials beyond GaAs and will provide new insights into the underlying spin dependent photophysics properties for new materials.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient drift velocity of photoexcited electrons in CdTe;Journal of Computational Electronics;2024-04-29

2. The wavelength dependence of drift velocities of photogenerated electrons in CdTe;The European Physical Journal B;2023-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3