Calibrated Photoacoustic Spectrometer Based on a Conventional Imaging System for In Vitro Characterization of Contrast Agents

Author:

Lucas Théotim,Sarkar MitradeepORCID,Atlas Yoann,Linger Clément,Renault GillesORCID,Gazeau Florence,Gateau JérômeORCID

Abstract

Photoacoustic (PA) imaging systems are spreading in the biomedical community, and the development of new PA contrast agents is an active area of research. However, PA contrast agents are usually characterized with spectrophotometry or uncalibrated PA imaging systems, leading to partial assessment of their PA efficiency. To enable quantitative PA spectroscopy of contrast agents in vitro with conventional PA imaging systems, we have developed an adapted calibration method. Contrast agents in solution are injected in a dedicated non-scattering tube phantom imaged at different optical wavelengths. The calibration method uses a reference solution of cupric sulfate to simultaneously correct for the spectral energy distribution of excitation light at the tube location and perform a conversion of the tube amplitude in the image from arbitrary to spectroscopic units. The method does not require any precise alignment and provides quantitative PA spectra, even with non-uniform illumination and ultrasound sensitivity. It was implemented on a conventional imaging setup based on a tunable laser operating between 680 nm and 980 nm and a 5 MHz clinical ultrasound array. We demonstrated robust calibrated PA spectroscopy with sample volumes as low as 15 μL of known chromophores and commonly used contrast agents. The validated method will be an essential and accessible tool for the development of new and efficient PA contrast agents by improving their quantitative characterization.

Funder

French National Centre for Scientific Research

Groupement des Entreprises Françaises dans la Lutte contre le Cancer

Sorbonne University

Agence Nationale de la Recherche

European Union

Region Ile de France

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3