Identification of Weather Influences on Flight Punctuality Using Machine Learning Approach

Author:

Kaewunruen SakdiratORCID,Sresakoolchai JessadaORCID,Xiang Yue

Abstract

One of the top long-term threats to airport resilience is extreme climate-induced conditions, which negatively affect the airport and flight operations. Recent examples, including hurricanes, storms, extreme temperatures (cold/hot), and heavy rains, have damaged airport facilities, interrupted air traffic, and caused higher operational costs. With the development of civil aviation and the pre-COVID-19 surging demand for flights, the passengers’ complaints of flight delay increased, according to FoxBusiness. This study aims to discover the weather factors affecting flight punctuality and determine a high-dimensional scale of consequences stemming from weather conditions and flight operational aspects. Machine learning has been developed in correlation with the weather and statistical data for operations at Birmingham Airport as a case study. The cross-correlated datasets have been kindly provided by Birmingham Airport and the Meteorological Office. The scope and emphasis of this study is placed on the machine learning application to practical flight punctuality prediction in relation to climate conditions. Random forest, artificial neural network, support vector machine, and linear regression are used to develop predictive models. Grid-search and cross-validation are used to select the best parameters. The model can grasp the trend of flight punctuality rates well where R2 is 0.80 and the root mean square error (RMSE) is less than 15% using the model developed by random forest technique. The insights derived from this study will help Airport Authorities and the Insurance industry in predicting the scale of consequences in order to promptly enact and enable adaptative airport climate resilience plans, including air traffic rescheduling, financial resilience to climate variances and extreme weather conditions.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

MDPI AG

Subject

Atmospheric Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3