Simulations of Ozone Feedback Effects on the Equatorial Quasi-Biennial Oscillation with a Chemistry–Climate Model

Author:

Shibata Kiyotaka

Abstract

Ozone feedback effects on the quasi-biennial oscillation (QBO) were investigated with a chemistry–climate model (CCM) by modifying ozone abundance in the radiative process. Under a standard run for 50 years, the CCM could realistically reproduce the QBO of about a 28-month period for wind and ozone. Five experiment runs were made for 20 years through varying ozone abundance only in the equatorial stratosphere from 100 to 10 hPa by −40, −20, −10, +10, and +20%, respectively, after the chemistry module and transferring the resultant ozone to the radiation calculation. It was found that the modification of ozone abundance in the radiation substantially changed the period of the QBO but slightly influenced the amplitude of the QBO. The 10% and 20% increase runs led to longer QBO periods (31 and 34 months) than that of the standard run, i.e., lengthening by 3 and 6 months, while the 10%, 20%, and 40% decrease runs resulted in shorter periods (24, 22, and 17 months), i.e., shortening by 4, 6, and 11 months. These substantial changes in the QBO period in the experiment runs indicate that the ozone feedback significantly affects the QBO dynamics through the modulation in solar heating.

Publisher

MDPI AG

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3