Abstract
Chlorin E6 (Ce6)-incorporated nanophotosensitizers were fabricated for application in photodynamic therapy (PDT) of oral cancer cells. For this purpose, chitosan oligosaccharide (COS) was conjugated with hydrophobic and reactive oxygen species (ROS)-sensitive moieties, such as phenyl boronic acid pinacol ester (PBAP) via a thioketal linker (COSthPBAP). ThdCOOH was conjugated with PBAP to produce ThdCOOH-PBAP conjugates and then attached to amine groups of COS to produce a COSthPBAP copolymer. Ce6-incorporated nanophotosensitizers using the COSthPBAP copolymer were fabricated through the nanoprecipitation and dialysis methods. The Ce6-incorporated COSthPBAP nanophotosensitizers had a small diameter of less than 200 nm with a mono-modal distribution pattern. However, it became a multimodal and/or irregular distribution pattern when H2O2 was added. In a morphological observation using TEM, the nanophotosensitizers were disintegrated by the addition of H2O2, indicating that the COSthPBAP nanophotosensitizers had ROS sensitivity. In addition, the Ce6 release rate from the COSthPBAP nanophotosensitizers accelerated in the presence of H2O2. The SO generation was also higher in the nanophotosensitizers than in the free Ce6. Furthermore, the COSthPBAP nanophotosensitizers showed a higher intracellular Ce6 uptake ratio and ROS generation in all types of oral cancer cells. They efficiently inhibited the viability of oral cancer cells under light irradiation, but they did not significantly affect the viability of either normal cells or cancer cells in the absence of light irradiation. The COSthPBAP nanophotosensitizers showed a tumor-specific delivery capacity and fluorescence imaging of KB tumors in an in vivo animal tumor imaging study. We suggest that COSthPBAP nanophotosensitizers are promising candidates for the imaging and treatment of oral cancers.
Subject
General Materials Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献