Abstract
To achieve good long-term temperature stability in devices used in energy-conversion applications, this study is aimed at developing combined ceramics, referred to as PZN-PMN-PZT, comprising Pb(Zn1/3Nb2/3)O3 (PZN) and Pb(Mn1/3Nb2/3)O3 (PMN), which are typical relaxor ferroelectric materials, and Pb(Zr,Ti)O3 (PZT). The piezoelectric properties were compared based on several parameters according to the change in the composition ratio between relaxor materials, amounts of Sb2O3 dopant, and Zr/Ti ratio in the PZT system. Finally, we established optimal poling conditions to improve the electrical properties of the optimized piezoelectric material, based on the evaluation of ceramic properties according to the applied voltage during the poling process. The optimized composition of the investigated piezoelectric ceramics is represented by 0.14PZN-0.06PMN-0.80PbZr0.49Ti0.51 + 0.3 wt.% CuO + 0.3 wt.% Fe2O3 with 0.1 wt.% Sb2O3 doping, which yielded the superior properties (d33 = 361 pC/N, Qm = 1234, Tc = 306 °C).
Funder
Ministry of Trade, Industry and Energy
National Research Foundation of Korea
Subject
General Materials Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献