Numerical Study on Laser Shock Peening of Pure Al Correlating with Laser Shock Wave

Author:

Wang MingxiaoORCID,Wang ChengORCID,Tao Xinrong,Zhou Yuhao

Abstract

Laser shock peening (LSP) is an innovative and promising surface strengthening technique of metallic materials. The LSP-induced plastic deformation, the compressive residual stresses and the microstructure evolution are essentially attributed to the laser plasma-induced shock wave. A three-dimensional finite element model in conjunction with the dislocation density-based constitutive model was developed to simulate the LSP of pure Al correlating with the LSP-induced shock wave, and the predicted in-depth residual stresses are in reasonable agreement with the experiment results. The LSP-induced shock wave associated with the laser spot diameter of 8.0 mm propagates in the form of the plane wave, and attenuates exponentially. At the same time, the propagation and attenuation of the LSP-induced shock wave associated with the laser spot diameter of 0.8 mm are in the form of the spherical wave. The reflection of the LSP-induced shock wave at the bottom surface of the target model increases the plastic deformation of the target bottom, resulting in the increase of dislocation density and the decrease of dislocation cell size accordingly. Reducing the target thickness can significantly increase the reflection times of the LSP-induced shock wave at the bottom and top surfaces of the target model, which is considered to be conductive to the generation of the compressive residual stress field and grain refinement.

Funder

Anhui Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3