TEM Investigation of Asymmetric Deposition-Driven Crystalline-to-Amorphous Transition in Silicon Nanowires

Author:

Zang Yuan,Li LianbiORCID,Hu Jichao,Li Lei,Li Zelong,Li Zebin,Feng SongORCID,Zhang Guoqing,Xia Caijuan,Pu Hongbin

Abstract

Controlling the shape and internal strain of nanowires (NWs) is critical for their safe and reliable use and for the exploration of novel functionalities of nanodevices. In this work, transmission electron microscopy was employed to examine bent Si NWs prepared by asymmetric electron-beam evaporation. The asymmetric deposition of Cr caused the formation of nanosized amorphous-Si domains; the non-crystallinity of the Si NWs was controlled by the bending radius. No other intermediate crystalline phase was present during the crystalline-to-amorphous transition, indicating a direct phase transition from the original crystalline phase to the amorphous phase. Moreover, amorphous microstructures caused by compressive stress, such as amorphous Cr domains and boxes, were also observed in the asymmetric Cr layer used to induce bending, and the local non-crystallinity of Cr was lower than that of Si under the same bending radius.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3