Assessing Climate Change Impact on Soil Salinity Dynamics between 1987–2017 in Arid Landscape Using Landsat TM, ETM+ and OLI Data

Author:

Bannari Abderrazak,Al-Ali Zahra M.

Abstract

This paper examines the climate change impact on the spatiotemporal soil salinity dynamics during the last 30 years (1987–2017) in the arid landscape. The state of Kuwait, located at the northwest Arabian Peninsula, was selected as a pilot study area. To achieve this, a Landsat- Operational Land Imager (OLI) image acquired thereabouts simultaneously to a field survey was preprocessed and processed to derive a soil salinity map using a previously developed semi-empirical predictive model (SEPM). During the field survey, 100 geo-referenced soil samples were collected representing different soil salinity classes (non-saline, low, moderate, high, very high and extreme salinity). The laboratory analysis of soil samples was accomplished to measure the electrical conductivity (EC-Lab) to validate the selected and used SEPM. The results are statistically analyzed (p ˂ 0.05) to determine whether the differences are significant between the predicted salinity (EC-Predicted) and the measured ground truth (EC-Lab). Subsequently, the Landsat serial time’s datasets acquired over the study area with the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and OLI sensors during the last three decades over the intervals (1987, 1992, 1998, 2000, 2002, 2006, 2009, 2013, 2016 and 2017) were radiometrically calibrated. Likewise, the datasets were atmospherically and spectrally normalized by applying a semi-empirical line approach (SELA) based on the pseudo-invariant targets. Afterwards, a series of soil salinity maps were derived through the application of the SEPM on the images sequence. The trend of salinity changes was statistically tested according to climatic variables (temperatures and precipitations). The results revealed that the EC-Predicted validation display a best fits in comparison to the EC-Lab by indicating a good index of agreement (D = 0.84), an excellent correlation coefficient (R2 = 0.97) and low overall root mean square error (RMSE) (13%). This also demonstrates the validity of SEPM to be applicable to the other images acquired multi-temporally. For cross-calibration among the Landsat serial time’s datasets, the SELA performed significantly with an RMSE ≤ ± 5% between all homologous spectral reflectances bands of the considered sensors. This accuracy is considered suitable and fits well the calibration standards of TM, ETM+ and OLI sensors for multi-temporal studies. Moreover, remarkable changes of soil salinity were observed in response to changes in climate that have warmed by more than 1.1 °C with a drastic decrease in precipitations during the last 30 years over the study area. Thus, salinized soils have expanded continuously in space and time and significantly correlated to precipitation rates (R2 = 0.73 and D = 0.85).

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference168 articles.

1. The dimensions of soil security

2. The threat of soil salinity: A European scale review

3. Climate Change vis-a-vis Saline Agriculture: Impact and Adaptation Strategies;Dagar,2016

4. Using HJ-I satellite remote sensing data to surveying the saline soil distribution in Yinchuan Plain of China;Meimei;Afr. J. Agric. Res.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3