Author:
Bannari Abderrazak,Al-Ali Zahra M.
Abstract
This paper examines the climate change impact on the spatiotemporal soil salinity dynamics during the last 30 years (1987–2017) in the arid landscape. The state of Kuwait, located at the northwest Arabian Peninsula, was selected as a pilot study area. To achieve this, a Landsat- Operational Land Imager (OLI) image acquired thereabouts simultaneously to a field survey was preprocessed and processed to derive a soil salinity map using a previously developed semi-empirical predictive model (SEPM). During the field survey, 100 geo-referenced soil samples were collected representing different soil salinity classes (non-saline, low, moderate, high, very high and extreme salinity). The laboratory analysis of soil samples was accomplished to measure the electrical conductivity (EC-Lab) to validate the selected and used SEPM. The results are statistically analyzed (p ˂ 0.05) to determine whether the differences are significant between the predicted salinity (EC-Predicted) and the measured ground truth (EC-Lab). Subsequently, the Landsat serial time’s datasets acquired over the study area with the Thematic Mapper (TM), Enhanced Thematic Mapper Plus (ETM+) and OLI sensors during the last three decades over the intervals (1987, 1992, 1998, 2000, 2002, 2006, 2009, 2013, 2016 and 2017) were radiometrically calibrated. Likewise, the datasets were atmospherically and spectrally normalized by applying a semi-empirical line approach (SELA) based on the pseudo-invariant targets. Afterwards, a series of soil salinity maps were derived through the application of the SEPM on the images sequence. The trend of salinity changes was statistically tested according to climatic variables (temperatures and precipitations). The results revealed that the EC-Predicted validation display a best fits in comparison to the EC-Lab by indicating a good index of agreement (D = 0.84), an excellent correlation coefficient (R2 = 0.97) and low overall root mean square error (RMSE) (13%). This also demonstrates the validity of SEPM to be applicable to the other images acquired multi-temporally. For cross-calibration among the Landsat serial time’s datasets, the SELA performed significantly with an RMSE ≤ ± 5% between all homologous spectral reflectances bands of the considered sensors. This accuracy is considered suitable and fits well the calibration standards of TM, ETM+ and OLI sensors for multi-temporal studies. Moreover, remarkable changes of soil salinity were observed in response to changes in climate that have warmed by more than 1.1 °C with a drastic decrease in precipitations during the last 30 years over the study area. Thus, salinized soils have expanded continuously in space and time and significantly correlated to precipitation rates (R2 = 0.73 and D = 0.85).
Subject
General Earth and Planetary Sciences
Reference168 articles.
1. The dimensions of soil security
2. The threat of soil salinity: A European scale review
3. Climate Change vis-a-vis Saline Agriculture: Impact and Adaptation Strategies;Dagar,2016
4. Using HJ-I satellite remote sensing data to surveying the saline soil distribution in Yinchuan Plain of China;Meimei;Afr. J. Agric. Res.,2011
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献