Application of Convolutional Neural Network for Spatiotemporal Bias Correction of Daily Satellite-Based Precipitation

Author:

Le Xuan-HienORCID,Lee Giha,Jung Kwansue,An Hyun-uk,Lee Seungsoo,Jung Younghun

Abstract

Spatiotemporal precipitation data is one of the essential components in modeling hydrological problems. Although the estimation of these data has achieved remarkable accuracy owning to the recent advances in remote-sensing technology, gaps remain between satellite-based precipitation and observed data due to the dependence of precipitation on the spatiotemporal distribution and the specific characteristics of the area. This paper presents an efficient approach based on a combination of the convolutional neural network and the autoencoder architecture, called the convolutional autoencoder (ConvAE) neural network, to correct the pixel-by-pixel bias for satellite-based products. The two daily gridded precipitation datasets with a spatial resolution of 0.25° employed are Asian Precipitation-Highly Resolved Observational Data Integration towards Evaluation (APHRODITE) as the observed data and Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record (PERSIANN-CDR) as the satellite-based data. Furthermore, the Mekong River basin was selected as a case study, because it is one of the largest river basins, spanning six countries, most of which are developing countries. In addition to the ConvAE model, another bias correction method based on the standard deviation method was also introduced. The performance of the bias correction methods was evaluated in terms of the probability distribution, temporal correlation, and spatial correlation of precipitation. Compared with the standard deviation method, the ConvAE model demonstrated superior and stable performance in most comparisons conducted. Additionally, the ConvAE model also exhibited impressive performance in capturing extreme rainfall events, distribution trends, and described spatial relationships between adjacent grid cells well. The findings of this study highlight the potential of the ConvAE model to resolve the precipitation bias correction problem. Thus, the ConvAE model could be applied to other satellite-based products, higher-resolution precipitation data, or other issues related to gridded data.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3