Detection of Canopy Chlorophyll Content of Corn Based on Continuous Wavelet Transform Analysis

Author:

Zhang Junyi,Sun Hong,Gao Dehua,Qiao Lang,Liu Ning,Li Minzan,Zhang Yao

Abstract

The content of chlorophyll, an important substance for photosynthesis in plants, is an important index used to characterize the photosynthetic rate and nutrient grade of plants. The real-time rapid acquisition of crop chlorophyll content is of great significance for guiding fine management and differentiated fertilization in the field. This study used the method of continuous wavelet transform (CWT) to process the collected visible and near-infrared spectra of a corn canopy. This task was conducted to extract the valuable information in the spectral data and improve the sensitivity of chlorophyll content assessment. First, a Savitzky–Golay filter and standard normal variable processing were applied to the spectral data to eliminate the influence of random noise and limit drift on spectral reflectance. Second, CWT was performed on the spectral reflection curve with 10 frequency scales to obtain the wavelet energy coefficient of the spectral data. The characteristic bands related to chlorophyll content in the spectral data and the wavelet energy coefficients were screened using the maximum correlation coefficient and the local correlation coefficient extrema, respectively. A partial least-square regression model was established. Results showed that the characteristic bands selected via local correlation coefficient extrema in a wavelet energy coefficient created a detection model with optimal accuracy. The determination coefficient (Rc2) of the calibration set was 0.7856, and the root-mean-square error (RMSE) of the calibration set (RMSEC) was 3.0408. The determination coefficient (Rv2) of the validation set is was 0.7364, and the RMSE of the validation set (RMSEV) was 3.3032. Continuous wavelet transform is a process of data dimension enhancement which can effectively extract the sensitive variables from spectral datasets and improve the detection accuracy of models.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3