The Determination of Effective Beamwidth of Ku Band Profiling Radar Based on Waveform Matching Method in the Boreal Forest of Finland

Author:

Zhou Hui,Chen YuweiORCID,Hu Nan,Dong Yuandan,Xu Xinmin,Feng Ziyi,Hakala Teemu,Hyyppä Juha

Abstract

Radar scientists typically define the radar beamwidth as a half-power beamwidth (HPBW) in the main lobe of the antenna pattern. However, the microwave radiations outside radar HPBW might also backscatter into the radar receiver and change the distribution of the received signal. To determine an actual and effective beamwidth illuminated on the measured targets, we first generate the simulated-waveforms derived from coincident lidar points and radar equation and then develop a waveform matching method to seek out an optimal beamwidth based on the 95% threshold of correlation coefficients between radar waveforms and the simulated-waveforms. The 8565 measurements of a Ku-band profiling radar named Tomoradar and coincident lidar data in a widespread heterogeneous forest area of southern Finland are employed for resolving the effective beamwidth. The results reveal that about 97% of the effective beamwidth are larger than Tomoradar HPBW, but the effective beamwidth could be changeable for each measurement due to variations in the scattering properties of vegetation. Thus, a fixed average effective beamwidth (AEBW) with 0.1-degree resolution is introduced to determine Tomoradar cone according to the effective beamwidth and corresponding proportions. We discover that Tomoradar AEBW is approximately approaching to 8°, which is larger than Tomoradar HPBW of 6°. If we regard AEBW as the actual Tomoradar beamwidth rather than HPBW, the simulated-waveforms have substantially stronger correlation strength with Tomoradar waveforms, and canopy tops derived from lidar data within Tomoradar AEBW are much closer to those extracted from Tomoradar waveforms. The results demonstrate that radar AEBW is a more appropriate reference for designing radar antenna and selecting the region size of validation data such as lidar points or the ground truth. However, considering that radar AEBW is variable for different radar antenna pattern, we suggest that actual radar beamwidth should be defined with a fraction of total radiation energy within radar AEBW, just like the definition of laser divergence of lidar based on the percentage of transmitted laser energy. In this paper, for a forest inventory research case, the fraction of total radiation energy within the AEBW for radar system is supposed to be 91%.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3