Free-Surface Velocity Measurement Using Direct Sensor Orientation-Based STIV

Author:

Zhang ZhenORCID,Zhao Lijun,Liu Boyuan,Jiang Tiansheng,Cheng Ze

Abstract

Particle image velocimetry (PIV) is a quantitative flow visualization technique, which greatly improves the ability to characterize various complex flows in laboratory and field environments. However, the deployment of reference objects or ground control points (GCPs) for velocity calibration is still a challenge for in situ free-surface velocity measurements. By combining space-time image velocimetry (STIV) with direct sensor orientation (DSO) photogrammetry, a laser distance meter (LDM)-supported photogrammetric device is designed, to realize the GCPs-free surface velocity measurement under an oblique shooting angle. The velocity calibration with DSO is based on the collinear equation, while the lens distortion, oblique shooting angle, water level variation, and water surface slope are introduced to build an imaging measurement model with explicit physical meaning for parameters. To accurately obtain the in situ position and orientations of the camera utilizing the LDM and its embedded tilt sensor, the camera’s intrinsic parameters and relative position within the LDM are previously calibrated with a planar chessboard. A flume experiment is designed to evaluate the uncertainty of optical flow estimation and velocity calibration. Results show that the proposed DSO-STIV has good transferability and operability for in situ measurements. It is superior to propeller current meters and surface velocity radars in characterizing shallow free-surface flows; this is attributed to its non-intrusive, whole-field, and high-resolution features. In addition, the combined uncertainty of free-surface velocity measurement is analyzed, which provides an alternative solution for error assessment when comparing measurement failures.

Funder

China Postdoctoral Science Foundation

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Natural Science Foundation of JiangSu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference32 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3