Abstract
Resolving the origin of endangered taxa is an essential component of conservation. This information can be used to guide efforts of bolstering genetic diversity, and also enables species recovery and future evolutionary studies. Here, we used low-coverage whole genome sequencing to clarify the origin of Helianthus schweinitzii, an endangered tetraploid sunflower that is endemic to the Piedmont Plateau in the eastern United States. We surveyed four accessions representing four populations of H. schweinitzii and 38 accessions of six purported parental species. Using de novo approaches, we assembled 87,004 bp of the chloroplast genome and 6770 bp of the nuclear 35S rDNA. Phylogenetic reconstructions based on the chloroplast genome revealed no reciprocal monophyly of taxa. In contrast, nuclear rDNA data strongly supported the currently accepted sections of the genus Helianthus. Information from combined cpDNA and rDNA provided evidence that H. schweinitzii is likely an allo-tetraploid that formed as a result of hybridization between the diploids Helianthus giganteus and Helianthus microcephalus.
Subject
Genetics (clinical),Genetics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献