Bioelectrochemical Systems for Groundwater Remediation: The Development Trend and Research Front Revealed by Bibliometric Analysis

Author:

Li ,Chen ,Xie ,Liu ,Xiong

Abstract

: Due to the deficiency of fresh water resources and the deterioration of groundwater quality worldwide, groundwater remedial technologies are especially crucial for preventing groundwater pollution and protecting the precious groundwater resource. Among the remedial alternatives, bioelectrochemical systems have unique advantages on both economic and technological aspects. However, it is rare to see a deep study focused on the information mining and visualization of the publications in this field, and research that can reveal and visualize the development trajectory and trends is scarce. Therefore, this study summarizes the published information in this field from the Web of Science Core Collection of the last two decades (1999–2018) and uses Citespace to quantitatively visualize the relationship of authors, published countries, organizations, funding sources, and journals and detect the research front by analyzing keywords and burst terms. The results indicate that the studies focused on bioelectrochemical systems for groundwater remediation have had a significant increase during the last two decades, especially in China, Germany and Italy. The national research institutes and universities of the USA and the countries mentioned above dominate the research. Environmental Science & Technology, Applied and Environmental Microbiology, and Water Research are the most published journals in this field. The network maps of the keywords and burst terms suggest that reductive microbial diversity, electron transfer, microbial fuel cell, etc., are the research hotspots in recent years, and studies focused on microbial enrichment culture, energy supply/recovery, combined pollution remediation, etc., should be enhanced in future.

Funder

the National Natural Science Foundation of China

the Major Science and Technology Program for Water Pollution Control and Treatment of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3