Author:
Yang Chunhong,Jian Yongjun,Xie Zhiyong,Li Fengqin
Abstract
The present paper discusses the electromagnetohydrodynamic (EMHD) electroosmotic flow (EOF) and entropy generation of incompressible third-grade fluids in a parallel microchannel. Numerical solutions of the non-homogeneous partial differential equations of velocity and temperature are obtained by the Chebyshev spectral collocation method. The effects of non-Newtonian parameter Λ, Hartman number Ha and Brinkman number Br on the velocity, temperature, Nusselt number and entropy generation are analyzed in detail and shown graphically. The main results show that both temperature and Nusselt number decrease with the non-Newtonian physical parameter, while the local and total entropy generation rates exhibit an adverse trend, which means that non-Newtonian parameter can provoke the local entropy generation rate. In addition, we also find that the increase of non-Newtonian parameter can lead to the increase of the critical Hartman number Hac.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Inner Mongolia
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献