Survival Rate of Cells Sent by a Low Mechanical Load Tube Pump: The “Ring Pump”

Author:

Uesugi Kaoru,Nishiyama Keizo,Hirai Koki,Inoue Hiroaki,Sakurai Yoichi,Yamada Yoji,Taniguchi Takashi,Morishima Keisuke

Abstract

A ring pump (RP) is a useful tool for microchannels and automated cell culturing. We have been developing RPs (a full-press ring pump, FRP; and a mid-press ring pump, MRP). However, damage to cells which were sent by the RP and the MRP was not investigated, and no other studies have compared the damage to cells between RPs and peristaltic pumps (PPs). Therefore, first, we evaluated the damage to cells that were sent by a small size FRP (s-FRP) and small size MRPs (s-MRPs; gap = 25 or 50 μm, respectively). “Small size” means that the s-FRP and the s-MRPs are suitable for microchannel-scale applications. The survival rate of cells sent by the s-MRPs was higher than those sent by the s-FRP, and less damage caused by the former. Second, we compared the survival rate of cells that were sent by a large size FRP (l-FRP), a large size MRP (l-MRP) (gap = 50 μm) and a PP. “Large size” means that the l-FRP and the l-MRP are suitable for automated cell culture system applications. We could not confirm any differences among the cell survival rates. On the other hand, when cells suspended in Dulbecco’s phosphate-buffered saline solution were circulated with the l-MRP (gap = 50 μm) and the PP, we confirmed a difference in cell survival rate, and less damage caused by the former.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Open Hardware Bioprinter Part I: A bioextruder with a peristaltic pump approach;2023 IEEE XXX International Conference on Electronics, Electrical Engineering and Computing (INTERCON);2023-11-02

2. Feasibility of an acoustophoresis-based system for a high-throughput cell washing: application to bioproduction;Cytotherapy;2023-08

3. Micropumps for Microfluidic Devices and BioMEMS;Journal of Physics: Conference Series;2020-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3