Rheology of a Dilute Suspension of Aggregates in Shear-Thinning Fluids

Author:

Trofa Marco,D’Avino Gaetano

Abstract

The prediction of the viscosity of suspensions is of fundamental importance in several fields. Most of the available studies have been focused on particles with simple shapes, for example, spheres or spheroids. In this work, we study the viscosity of a dilute suspension of fractal-shape aggregates suspended in a shear-thinning fluid by direct numerical simulations. The suspending fluid is modeled by the power-law constitutive equation. For each morphology, a map of particle angular velocities is obtained by solving the governing equations for several particle orientations. The map is used to integrate the kinematic equation for the orientation vectors and reconstruct the aggregate orientational dynamics. The intrinsic viscosity is computed by a homogenization procedure along the particle orbits. In agreement with previous results on Newtonian suspensions, the intrinsic viscosity, averaged over different initial orientations and aggregate morphologies characterized by the same fractal parameters, decreases by increasing the fractal dimension, that is, from rod-like to spherical-like aggregates. Shear-thinning further reduces the intrinsic viscosity showing a linear dependence with the flow index in the investigated range. The intrinsic viscosity can be properly scaled with respect to the number of primary particles and the flow index to obtain a single curve as a function of the fractal dimension.

Funder

H2020 European Research Council

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3