Enhanced Development of Sweat Latent Fingerprints Based on Ag-Loaded CMCS/PVA Composite Hydrogel Film by Electron Beam Radiation

Author:

Yang Jinyu,Wang Yayang,Zhao YuanORCID,Liu Dongliang,Rao Lu,Wang Zhijun,Fu Lili,Wang Yifan,Yang Xiaojie,Li Yuesheng,Liu Yi

Abstract

Over time, difficulties have been encountered in detecting potential fingerprints. In this study, an Ag/CMCS/PVA(ACP) hydrogel film was developed for fingerprint development by electron beam radiation method. The chemical bond, thermostability, chemical components, microstructure, and micromorphology of the CMCS/PVA composite hydrogel film were characterized by FT-IR, TG, XRD, and SEM, respectively. Swelling behaviors and mechanical performance of the CMCS/PVA composite hydrogel were also investigated at different irradiation doses, pH, media, and NaCl contents to obtain the optimum preparation conditions. Through experimental exploration, we found that the fingerprints appeared more obvious when the irradiated prepared ACP hydrogel film was sprayed with 0.6 mg/mL of Ag+ and the excitation wavelength was about 254 nm with UV lamp irradiation for 20 min. The cytotoxicity the CMCS/PVA composite hydrogel on mouse skin fibroblasts L929 cells was also studied, confirming its biological security. Sweat latent fingerprint manifestation has important scientific significance with respect to the development of new processes and functional materials in the field of fingerprint manifestation, enriching and complementing the application of composite hydrogels.

Publisher

MDPI AG

Subject

Polymers and Plastics,Organic Chemistry,Biomaterials,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3