Stabilized Formulation for Modeling the Erosion/Deposition Flux of Sediment in Circulation/CFD Models

Author:

Chou Yi-JuORCID,Shao Yun-Chuan,Sheng Yi-Hao,Cheng Che-Jung

Abstract

In field-scale modeling, when the resuspension of sediment is modeled using a hydrodynamic model, a standard and common approach is to add a resuspension flux as the bottom boundary condition in the transport model. In this study, we show that the way of simply imposing an empirical bottom erosion formula as the flux is actually unrealistic. Its inability to stabilize the sediment concentration can cause excessive suspension fluxes in some extreme cases. Moreover, we present a modified erosion/deposition formula to model the resuspension of sediment. The formulation is based on volume conservation in the presence of erosion/deposition near the bottom. By taking into account the prescribed dry density of the bed material, the proposed formulation is able to produce realistic near-bed concentrations while ensuring model stability. The formulation is then tested in a one-dimensional vertical model and field modeling cases using a three-dimensional coastal circulation model. We show that the modified formulation is particularly important in modeling mud resuspension subject to the large bottom stress, which can be a result of waves or a strong river discharge.

Funder

Ministry of Science and Technology, Taiwan

Ministry of Education

National Taiwan University

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3