A Constitutive Equation of Turbulence

Author:

Egolf Peter W.,Hutter Kolumban

Abstract

Even though applications of direct numerical simulations are on the rise, today the most usual method to solve turbulence problems is still to apply a closure scheme of a defined order. It is not the case that a rising order of a turbulence model is always related to a quality improvement. Even more, a conceptual advantage of applying a lowest order turbulence model is that it represents the analogous method to the procedure of introducing a constitutive equation which has brought success to many other areas of physics. First order turbulence models were developed in the 1920s and today seem to be outdated by newer and more sophisticated mathematical-physical closure schemes. However, with the new knowledge of fractal geometry and fractional dynamics, it is worthwhile to step back and reinvestigate these lowest order models. As a result of this and simultaneously introducing generalizations by multiscale analysis, the first order, nonlinear, nonlocal, and fractional Difference-Quotient Turbulence Model (DQTM) was developed. In this partial review article of work performed by the authors, by theoretical considerations and its applications to turbulent flow problems, evidence is given that the DQTM is the missing (apparent) constitutive equation of turbulent shear flows.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Mechanical Engineering,Condensed Matter Physics

Reference38 articles.

1. A new model on turbulent shear flows;Egolf;Helv. Phys. Acta,1991

2. Boundary-Layer Theory;Schlichting,1979

3. The Fractional Calculus;Oldham,1974

4. Physikalische Statistik und Physik der Wärme;Reif,1975

5. Calcules des Probabilités;Lévy,1925

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3