Performance of Deep Learning Models in Forecasting Gait Trajectories of Children with Neurological Disorders

Author:

Kolaghassi RaniaORCID,Al-Hares Mohamad KenanORCID,Marcelli GianlucaORCID,Sirlantzis KonstantinosORCID

Abstract

Forecasted gait trajectories of children could be used as feedforward input to control lower limb robotic devices, such as exoskeletons and actuated orthotic devices (e.g., Powered Ankle Foot Orthosis—PAFO). Several studies have forecasted healthy gait trajectories, but, to the best of our knowledge, none have forecasted gait trajectories of children with pathological gait yet. These exhibit higher inter- and intra-subject variability compared to typically developing gait of healthy subjects. Pathological trajectories represent the typical gait patterns that rehabilitative exoskeletons and actuated orthoses would target. In this study, we implemented two deep learning models, a Long-Term Short Memory (LSTM) and a Convolutional Neural Network (CNN), to forecast hip, knee, and ankle trajectories in terms of corresponding Euler angles in the pitch, roll, and yaw form for children with neurological disorders, up to 200 ms in the future. The deep learning models implemented in our study are trained on data (available online) from children with neurological disorders collected by Gillette Children’s Speciality Healthcare over the years 1994–2017. The children’s ages range from 4 to 19 years old and the majority of them had cerebral palsy (73%), while the rest were a combination of neurological, developmental, orthopaedic, and genetic disorders (27%). Data were recorded with a motion capture system (VICON) with a sampling frequency of 120 Hz while walking for 15 m. We investigated a total of 35 combinations of input and output time-frames, with window sizes for input vectors ranging from 50–1000 ms, and output vectors from 8.33–200 ms. Results show that LSTMs outperform CNNs, and the gap in performance becomes greater the larger the input and output window sizes are. The maximum difference between the Mean Absolute Errors (MAEs) of the CNN and LSTM networks was 0.91 degrees. Results also show that the input size has no significant influence on mean prediction errors when the output window is 50 ms or smaller. For output window sizes greater than 50 ms, the larger the input window, the lower the error. Overall, we obtained MAEs ranging from 0.095–2.531 degrees for the LSTM network, and from 0.129–2.840 degrees for the CNN. This study establishes the feasibility of forecasting pathological gait trajectories of children which could be integrated with exoskeleton control systems and experimentally explores the characteristics of such intelligent systems under varying input and output window time-frames.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Introduction

2. Research and Development Prototype for Machine Augmentation of Human Strength and Endurance Hardiman I Project;Makinson,1971

3. Review of Exoskeleton: History, Design and Control

4. The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work

5. Wearable Exoskeleton Systems: Design, Control and Applications,2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3