A Semantic and Knowledge-Based Approach for Handover Management

Author:

Vivas Fulvio YesidORCID,Caicedo Oscar MauricioORCID,Nieves Juan CarlosORCID

Abstract

Handover Management (HM) is pivotal for providing service continuity, enormous reliability and extreme-low latency, and meeting sky-high data rates, in wireless communications. Current HM approaches based on a single criterion may lead to unnecessary and frequent handovers due to a partial network view that is constrained to information about link quality. In turn, HM approaches based on multicriteria may present a failure of handovers and wrong network selection, decreasing the throughput and increasing the packet loss in the network. This paper proposes SIM-Know, an approach for improving HM. SIM-Know improves HM by including a Semantic Information Model (SIM) that enables context-aware and multicriteria handover decisions. SIM-Know also introduces a SIM-based distributed Knowledge Base Profile (KBP) that provides local and global intelligence to make contextual and proactive handover decisions. We evaluated SIM-Know in an emulated wireless network. When the end-user device moves at low and moderate speeds, the results show that our approach outperforms the Signal Strong First (SSF, single criterion approach) and behaves similarly to the Analytic Hierarchy Process combined with the Technique for Order Preferences by Similarity to the Ideal Solution (AHP-TOPSIS, multicriteria approach) regarding the number of handovers and the number of throughput drops. SSF outperforms SIM-Know and AHP-TOPSIS regarding the handover latency metric because SSF runs a straightforward process for making handover decisions. At high speeds, SIM-Know outperforms SSF and AHP-TOPSIS regarding the number of handovers and the number of throughput drops and, further, improves the throughput, delay, jitter, and packet loss in the network. Considering the obtained results, we conclude that SIM-Know is a practical and attractive solution for cognitive HM.

Funder

InnovAccion Cauca project of the Colombian Science, Technology, and Innovation Fund

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3