Abstract
In this paper, we proposed large-scale optical tunnel switching networks based on the Torus topology network with WSS (Wavelength Selective Switch) for future big data applications. All nodes of the large-scale optical tunnel switching networks use WSS switch modules, and the communications between nodes use multiple λs (wavelengths), where a tunnel is established with a wavelength which can be reused. The widely used MEMS (Micro-Electro-Mechanical Systems) and LCoS (Liquid Crystal on Silicon) technologies are all millisecond-level switching speeds, so the frame size of the optical frame switch is very large, and this will reduce switching performance. Therefore, they are only suitable for optical tunnel switching networks design, but are not suitable for optical frame switch design. This multi-plane Torus topology network architecture not only increases network throughput, but also has fault tolerance to increase network reliability. When the traffic is changed, the number of tunnels between nodes can be scheduled in time to balance the load traffic and avoid traffic loss. Therefore, it can not only schedule the number of tunnels in time to balance the load traffic, in order to avoid traffic loss, but also because the channel is fixedly established, this does not generate any buffer delay, and this because of the transmission using optical transmission unlimited speed, so it is a good choice for future big data applications that require high speed, high bandwidth and low latency.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Reference13 articles.
1. Design and Performance Evaluation of Optical Ethernet Switching Architecture with Liquid Crystal on Silicon-Based Beam-Steering Technology
2. Optical Switching in Next Generation Data Centers;Testa,2018
3. OPMDC: Architecture Design and Implementation of a New Optical Pyramid Data Center Network;Tien;J. Lightwave Technol.,2015
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献