Abstract
Structural health monitoring (SHM) techniques, which are also considered as online nondestructive testing methods, are significant in modern structural engineering due to their ability to guarantee structure safety while reducing maintenance cost. It is often necessary to combine different SHM methods to achieve a more reliable damage detection result. However, the hardware of the SHM systems is usually expensive, bulky, and heavy when they are designed separately. Therefore, this paper proposes a three-layer architecture for designing an integrated multi-function SHM system to achieve a small, lightweight, and low power consumption SHM system. Based on the architecture, an integrated SHM system with impact monitoring and electromechanical impedance measurement is developed. In addition, a scheduling module is developed to manage the two functions of the system. Furthermore, an integrated interface is developed to transfer the data and the command. Then, an integrated printed circuit board is designed and manufactured to achieve the aforementioned functions. The designed system is applied for impact monitoring and damage detection for a supporting structure of a sailplane.
Funder
China Scholarship Council
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献