Impact of Cyclic Loading on Shakedown in Cohesive Soils—Simple Hysteresis Loop Model

Author:

Głuchowski AndrzejORCID,Sas WojciechORCID

Abstract

The objective of this study is to characterize the permanent deformations and to present a mathematical model that enables the prediction of permanent strain during cyclic loading. First, laboratory cyclic triaxial tests are conducted on sandy silty clay samples to gather the data concerning the permanent deformation characteristics. The article discusses the shakedown theory and abation phenomena, and we present the Simple Hysteresis Loop Model (SHLM) based on the stress-controlled test results. The determined permanent deformation properties are a base for the development of SHLM parameters. The presented model is capable of accurately predicting the permanent deformation characteristics based on the derived parameters from the static tests. The SHLM connects the stress–strain and stiffness properties of cohesive soil, which gives it a great advantage to use it in engineering practice. The derived model was verified based on ex–post comparison to performed cyclic triaxial test. The developed SHLM mean absolute percentage error is equal to 12.18%, which indicates that the developed SHLM has desirable accuracy in the prediction of permanent strain properties in compacted cohesive soils.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference50 articles.

1. Philosophy of geotechnical design in civil engineering—Possibilities and risks;Bogusz;Bull. Pol. Acad. Sci. Tech. Sci.,2019

2. Scale Effect in Direct Shear Tests on Recycled Concrete Aggregate

3. Torsional Shear Device for Testing the Dynamic Properties of Recycled Material

4. A computational procedure for predicting the long term residual settlement of a platform induced by repeated traffic loading

5. Integrating Traditional Characterization Techniques in Mechanistic Pavement Design Approaches;Araya,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3