Thermal Analysis of Photoelectron Emission (PE) and X-ray Photoelectron Spectroscopy (XPS) Data for Iron Surfaces Scratched in Air, Water, and Liquid Organics

Author:

Momose Yoshihiro,Sakurai Takao,Nakayama Keiji

Abstract

Little is known about the temperature dependence of electron transfer occurring at real metal surfaces. For iron surfaces scratched in seven environments, we report Arrhenius activation energies obtained from the data of photoelectron emission (PE) and X-ray photoelectron spectroscopy (XPS). The environments were air, benzene, cyclohexane, water, methanol, ethanol, and acetone. PE was measured using a modified Geiger counter during repeated temperature scans in the 25–339 °C range under 210-nm-wavelength light irradiation and during light wavelength scans in the range 300 to 200 nm at 25, 200, and 339 °C. The standard XPS measurement of Fe 2p, Fe 3p, O 1s, and C 1s spectra was conducted after wavelength scan. The total number of electrons counted in the XPS measurement of the core spectra, which was called XPS intensity, strongly depended on the environments. The PE quantum yields during the temperature scan increased with temperature, and its activation energies (ΔEaUp1) strongly depended on the environment, being in the range of 0.212 to 0.035 eV. The electron photoemission probability (αA) obtained from the PE during the wavelength scan increased with temperature, and its activation energies (ΔEαA) were almost independent of the environments, being in the range of 0.113–0.074 eV. The environment dependence of the PE behavior obtained from temperature and wavelength scans was closely related to that of the XPS characteristics, in particular, the XPS intensities of O 1s and the O2− component of the O 1s spectrum, the acid–base interaction between the environment molecule and Fe–OH, and the growth of non-stoichiometric FexO. Furthermore, the origin of the αA was attributed to the escape depth of hot electrons across the overlayer.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3