Failure Prediction of the Rotating Machinery Based on CEEMDAN-ApEn Feature and AR-UKF Model

Author:

Yang Jingli,Chang Yongqi,Gao Tianyu,Wang Jianfeng

Abstract

A novel failure prediction method of the rotating machinery is presented in this paper. Firstly, the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) is applied to decompose the vibration signals of the rotating machinery into a number of intrinsic mode functions (IMFs) and a residual (Res), and the metric of maximal information coefficient (MIC) is used to select eligible IMFs to reconstruct signals. Then, the approximate entropy (ApEn)-weighted energy value of the reconstructed signals are calculated to track the degradation process of the rotating machinery. Furthermore, the Chebyshev inequality is introduced to determine the prediction starting time (PST). Finally, the auto regress (AR) model and unscented Kalman filter (UKF) algorithm are used to predict the remaining useful life (RUL) of the rotating machinery. The method is fully evaluated in a test-to-failure experiment. The obtained results show that the proposed method outperforms its counterparts on failure prediction of the rotating machinery.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference40 articles.

1. Several issues of scientific development of safety production(including safety manufacturing) in China

2. Development of fault detection and diagnosis technology of rolling bearing;Li;Eng. Test,2009

3. Historical review and future expectation of dimensionless diagnosis in China;Huang;China Plant Eng.,2000

4. Fault diagnosis of gears based on local mean decomposition combing with kurtosis;Pan;J. Vibroeng.,2014

5. Robust performance degradation assessment methods for enhanced rolling element bearing prognostics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3