Effect of Exposure to High Temperature on the Mechanical Properties of SIFRCCs

Author:

Kim SeungwonORCID,Oli Topendra,Park CheolwooORCID

Abstract

Many researchers have studied explosion prevention and fire resistance of high-strength concrete mixed with organic fiber and steel fibers. The fire resistance of high-performance fiber reinforced cement composites is desirable in terms of physical and mechanical properties. However, the use of a polymer as an alternative to organic fiber has not been clearly studied. In this study, a slurry infiltration method was used to obtain slurry-infiltrated fiber-reinforced cementitious composites (SIFRCCs) specimens. Powder polymer was used instead of organic fibers during mixing of the slurry. The compressive and flexural strengths of the specimens after 1 hr of high temperature exposure according to the KS F 2257 (ISO 834) standard fire-temperature curve were measured. The addition of the polymer before and after high temperature (about 945 °C) exposure affected the strength of the SIFRCCs. The compressive and flexural strengths were decreased after exposure to high temperature in comparison with SIFRCCs without polymer because polymer create capillary pores due to melting and burning when exposure to high temperature. This minimizes the vapor pressure inside the concrete model and reduces the failure of the concrete model. The experimental results showed that the flexural strength at a high temperature for 1.0 % polymer content was the highest at 53.8 MPa. The flexural strength was reduced by 40~50% when compared to the flexural strength before high temperature exposure and comparing to SIFRCCs without polymer, the compressive strength in 1.5% polymer is lower, owing to voids that are created in the SIFRCCs after exposure to a high temperature.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference35 articles.

1. Structural Design for Fire Safety;Buchanan,2001

2. Effect of steel fiber volume fraction and aspect ratio type on the mechanical properties of SICON-based HPFRCC;Kim;Struct. Eng. Mech.,2018

3. Spalling behavior and residual resistance of fibre reinforced Ultra-High performance concrete after exposure to high temperatures

4. Flexural performance of SIFCON composite subjected to high temperature;Ahsanollah;Constr. Build. Mater.,2016

5. Fire response of Hybrid Fiber Reinforced Concrete to High Temperature

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3