A Deep Learning-Based Method to Detect Components from Scanned Structural Drawings for Reconstructing 3D Models

Author:

Zhao Yunfan,Deng XueyuanORCID,Lai Huahui

Abstract

Among various building information model (BIM) reconstruction methods for existing building, image-based method can identify building components from scanned as-built drawings and has won great attention due to its lower cost, less professional operators and better reconstruction performance. However, this kind of method will cost a great deal of time to design and extract features. Moreover, the manually extracted features have poor robustness and contain less non-geometric information. In order to solve this problem, this paper proposes a deep learning-based method to detect building components from scanned 2D drawings. Taking structural drawings as an example, in this article, 1500 images of structural drawings were firstly collected and preprocessed to guarantee the quality of data. After that, the neural network model—You Only Look Once (YOLO) was trained, verified and tested. In addition, a series of metrics were utilized to evaluate the performance of recognition. The results of test experiments show that the components in structural drawings (e.g., grid reference, column and beam) can be successfully detected, while the average detection accuracy of the whole image is over 80% and the average detection time for each image is 0.71 s. The experimental results demonstrate that the proposed method is robust and timesaving, which provides a good basis for the reconstruction of BIM from 2D drawings.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3