Author:
Kapuściński Tomasz,Warchoł Dawid
Abstract
In this paper, a method for the recognition of static hand postures based on skeletal data was presented. A novel descriptor was proposed. It encodes information about distances between particular hand points. Five different classifiers were tested, including four common methods and a proposed modification of nearest neighbor classifier, which can distinguish between posture classes differing mostly in hand orientation. The experiments were performed using three challenging datasets of gestures from Polish and American Sign Languages. The proposed method was compared with other approaches found in the literature. It outperforms every compared method, including our previous work, in terms of recognition rate.
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献